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Abstract: The frequency estimation of the harmonics in multiplicative and additive noise is investigated in this
paper. To improve the frequency resolution of estimation, this paper proposes a SVD-based ESPRIT algorithm
to estimate the frequency of harmonics in multiplicative and additive noise. The proposed SVD-based ESPRIT
algorithm not only has high-resolution, but also is easy to be implemented in practice because it does not need
peak searching. Simulation results clearly show the effectiveness of the proposed algorithm.
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1 Introduction
The problem of the parameter estimation of harmon-
ics in noise is commonly encountered in diverse ap-
plications in the sciences and engineering. Recent-
ly, most of existing algorithms have been developed
for the harmonic retrieval on constant amplitude har-
monics observed in additive noise. However, mul-
tiplicative noise often occurs in a variety of appli-
cations (see [1–7], and references therein). For ex-
ample, in Doppler-radar processing, according to the
knowledge of the frequency from a pulse train reflect-
ed from a moving object yields the target’s velocity,
it is more appropriate to model the harmonic as hav-
ing random amplitude rather than constant amplitude
when the target scintillates. In underwater acoustic
applications, the multiplicative noise can describe the
effects on acoustic waves due to fluctuations caused
by the medium, changing orientation, and interference
from scatterers of the target [3].

Some feasible methods are proposed to estimate
the parameter of harmonics in the presence of the
multiplicative noise. The parametric second-order ap-
proaches method was presented in [1], the higher or-
der statistics method was presented in in [2], and the
cyclic statistics method was proposed in [3], respec-
tively. All these methods [1–3] developed that some
statistics of the harmonics in multiplicative and ad-
ditive noise have peaks at corresponding parameter-
s and zeros at the other, and then estimated the har-
monic parameters by peak searching. However, due
to affection by the pseudo peaks and the Rayleigh
limit, all these methods cannot meet the requests of

the high-resolution for the given observed data. This
paper considers the high-resolution frequency estima-
tion method of harmonics in multiplicative and addi-
tive noise.

It is well-known that the estimation of signal pa-
rameter via rotational invariance techniques (ESPRIT)
is a high-resolution algorithm for the parameters esti-
mation of the harmonics by exploiting the underlying
rotational invariance of signal subspaces [8–11]. In
this paper, we first exploit the underlying harmonic
signal model in the multiplicative and additive noise.
And then, we develop the algorithm of the singu-
lar value decomposition (SVD)-based ESPRIT to es-
timate the frequencies of the harmonics in the mul-
tiplicative and additive noise. The proposed SVD-
based ESPRIT algorithm has high-resolution. More-
over, due to does not need peak searching, it is easy to
be implemented in practice.

The rest of this paper is organized as follows. In
Section 2, the signal model is introduced. In Section
3, the SVD-based ESPRIT algorithm is presented to
estimate frequencies of the harmonics in the multi-
plicative and additive noise. In Section 4, simulation
examples are conducted to demonstrate the effective-
ness of the proposed algorithm. In Section 5, we con-
clude the paper.

2 Signal Model
Without loss of generality, a discrete-time P -
component harmonics in the multiplicative and addi-
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tive noise model is considered in this paper as follows.

x(t) =

P∑
k=1

sk(t)e
j(ωkt+ϕk) + v(t), t = 1, 2 · · · , T,

(1)
where ωk and ϕk are the normalized frequency and
phase of the kth harmonic, respectively. sk(t) and
v(t) are the multiplicative noise and additive noise,
respectively. In this paper, we assume the following
conditions to be hold for the model (1): (1) ωk’s are
distinct in (−π/2, 0) ∪ (0, π/2), (2) ϕk’s are deter-
ministic constant in (−π, π], (3) sk(t)’s and v(t) are
mutually independent stationary real zero-mean white
Gaussian random process.

The parameter estimation of harmonics in multi-
plicative and additive noise includes mainly two con-
tents: the frequency estimation and the harmonic
number estimation. In this paper, the harmonic num-
ber is assumed to be known. We focus on the frequen-
cy estimation in multiplicative and additive noise. The
harmonic number estimation in multiplicative and ad-
ditive noise can be found in [7].

3 The SVD-based ESPRIT Algorith-
m

To exploit the underlying deterministic nature of the
harmonics in multiplicative and additive noise, we de-
fine a cyclic covariance of x(t) as following:

Cτ = Ē{x2(t)x2∗(t+τ)}−Ē{x2(t)}Ē{x2∗(t+τ)},
(2)

where τ = 0, 1, · · · ,K, and (·)∗ denotes conjugate.
Ē{·} represents the cyclic mean [3] which is defined
as

Ē{y(t)} = lim
T→∞

1

T

T∑
t=1

E{y(t)}. (3)

Substituting (1) into (2), Cτ can be written as

Cτ =

P∑
k=1

(σ2
sk
)2e−j2τωk + βδ(τ), (4)

where

β = 2(σ2
v)

2 +
P∑

k=1

2(σ2
sk
)2 +

P−1∑
k=1

P∑
l=k+1

4σ2
sk
σ2
sl

+
P∑

k=1

4σ2
sk
σ2
v , (5)

σ2
sk

and σ2
v are the variances of multiplicative noise

sk(t) and additive noise v(t), respectively. The de-
tailed derivation of (4) is given in Appendix.

Using the cyclic covariance Cτ , we construct two
K ×K matrices as follows

R1 =


C0 C1 · · · CK−1

C∗
1 C0 · · · CK−2
...

...
. . .

...
C∗
K−1 C∗

K−2 · · · C0

 , (6)

R2 =



C1 C2 C3 · · · CK−1 CK

C0 C1 C2 · · · CK−2 CK−1

C∗
1 C0 C1 · · · CK−3 CK−2
...

...
...

. . .
...

...
C∗
K−3 C∗

K−4 C∗
K−5 · · · C1 C2

C∗
K−2 C∗

K−3 C∗
K−4 · · · C0 C1


.

(7)
Substituting Cτ into (6) and (7), R1 and R2 can

be written as

R1 = ASAH + βI, (8)

R2 = ASΦHAH + βZ, (9)

where

A =


1 1 · · · 1

ej2ω1 ej2ω2 · · · ej2ωP

...
...

. . .
...

ej2ω1(K−1) ej2ω2(K−1) · · · ej2ωP (K−1)

 ,

(10)

S =


(σ2

s1)
2 0 0 · · · 0

0 (σ2
s2)

2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · (σ2
sP
)2

 , (11)

Φ =


ejω1 0 0 · · · 0
0 ejω2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · ejωP

 , (12)

and Z is a K ×K matrix with ones on the first subdi-
agonal and zeros elsewhere, i.e.,

Z =


0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

 . (13)

Matrices R1 and R2 have the similar forms with
Rxx and Rxy that presented in classical ESPRIT algo-
rithm [8]. Here, we detailedly show that the frequen-
cy parameters of the harmonics in multiplicative and
additive noise can be determined by the generalized
eigenvalues of the matrix pencil {R1,R2}.
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Theorem 1 Define Γ as the generalized eigenvalue
matrix associated with the matrix pencil {D1,D2}
where D1 = R1−λminI, D2 = R2−λminZ, and λmin
is the minimum (repeated) eigenvalue of R1. Then, if
S is nonsingular, the K×K matrix Γ is related to the
P × P matrix Φ by

Γ =

[
Φ 0
0 0

]
(14)

to within a permutation of the elements of Φ.

Proof: The proof is the same as the classical proof
given by Roy in [8] with replacing λmin = 2(σ2

v)
2 +

P∑
k=1

2(σ2
sk
)2 +

P−1∑
k=1

P∑
l=k+1

4σ2
sk
σ2
sl
+

P∑
k=1

4σ2
sk
σ2
v with

λmin = σ2. Therefore, the detailed proof is omitted
here.

Theorem 1 could be considered as the least
squares estimator of an K × K operator whose ac-
tion is restricted to a P -dimensional subspace. Here,
we propose a novel SVD-based ESPRIT algorithm to
solve this problem. The key idea of the proposed nov-
el algorithm is that the SVD is employed to transform
the generalized eigenproblem of an K×K matrix pen-
cil into the one of a P × P matrix pencil [11]. First,
we calculate the SVD of D1:

D1 = UΣVH = [U1,U2]

[
Σ1 0
0 Σ2

] [
VH

1

VH
2

]
(15)

where Σ1 consists of P principal singular values.
Without changing the generalized eigenvalues of the
matrix pencil {D1,D2}, we multiply D1 − γD2 by
UH

1 from the left and by V1 from the right to obtain a
P × P matrix pencil Σ1 − γUH

1 D2V1. Clearly, the
P values of the frequencies ωk(k = 1, 2, · · · , P ) are
now determined by the P generalized eigenvalues of
the P × P matrix pencil {Σ1,U

H
1 D2V1}.

It’s worth noting that Cτ in (2) is calculated when
data length T → ∞. However, in practice, we
have only finite observed data. Therefore, it is im-
portant to get the estimation of Cτ from a single
record {x(t)}Tt=1. To estimate Cτ from a single record
{x(t)}Tt=1, we need the following lemma in [12]:

Lemma 2 [12] If x(t) is mixing, and Mkx(α; τ ) ,

lim
T→∞

1
T

T∑
t=1

E{x(t)x(t+τ1) · · ·x(t+τk−1)}e−jαt ex-

ists, then the estimator

M̂kx(α; τ )

=
1

T

T∑
t=1

E{x(t)x(t+ τ1) · · ·x(t+ τk−1)}e−jαt

(16)

is asymptotically unbiased and mean square sense
(m.s.s.) consistent, i.e.,

lim
T→∞

M̂kx(α; τ )
m.s.s.
= Mkx(α; τ ). (17)

According to Lemma 2, the natural estimator for
Cτ is

Ĉτ =
1

T − τ

T−τ∑
t=1

x2(t)x2∗(t+ τ)

− 1

(T − τ)2

(
T−τ∑
t=1

x2(t)

)(
T−τ∑
t=1

x2∗(t+ τ)

)
,

(18)

and it is asymptotically unbiased and mean square
sense consistent.

In summary, the key steps of the proposed SVD-
based ESPRIT algorithm for the frequency estimation
of the harmonics in multiplicative and additive noise
is given as follows.

Step 1: Calculate the sample cyclic covariances
Ĉτ (τ = 0, 1, · · · ,K) from the observed data
{x(t)}Tt=1 using (18).

Step 2: Construct the matrices R1 and R2 using
Ĉ0, Ĉ1, · · · , ĈK according to (6) and (7).

Step 3: Calculate the eigendecomposition of R1

and denote the minimum eigenvalue as λmin.
Step 4: Calculate D1 = R1 − λminI and D2 =

R2 − λminZ.
Step 5: Calculate the singular value decomposi-

tion of D1 and denote Σ1 consists of P principal sin-
gular values, U1 consists of P principal left-singular
vectors, and V1 consists of P principal right-singular
vectors, respectively.

Step 6: Calculate the generalized eigenvalue de-
composition of the matrix pencil {Σ1,U

H
1 D2V1}

and denote the P generalized eigenvalues as
γ1, γ2, · · · , γP .

Step 7: Estimate the frequencies of the harmonics
by

ω̂k =
∠γk
2

, k = 1, 2, · · · , P, (19)

where ∠ denotes calculation of phase angle.

4 Simulation Results
In this section, simulations are conducted to demon-
strate the performance of the proposed SVD-based
ESPRIT algorithm for the frequency estimation of
the harmonics in multiplicative and additive noise, in
which P = 3, ϕ1 = 0.54, ϕ2 = 1.83, ϕ3 = −2.12,
with the data length T = 512. Multiplicative and
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Table 1: Frequency estimation results from 1000 Monte Carlo runs of example 1 (mean ± std)
method ω1 = −0.72 ω2 = 0.45 ω3 = 1.36

the cyclic statistics algorithm −0.7324 ± 0.2847 0.4618 ± 0.3316 1.3694 ± 0.2536

the proposed algorithm −0.7190 ± 0.0144 0.4516 ± 0.0152 1.3604 ± 0.0103

Table 2: Frequency estimation results from 100 Monte Carlo runs of example 2 (mean ± std)
method ω1 = 0.55 ω2 = 0.66 ω3 = 0.67

the cyclic statistics algorithm 0.5525 ± 0.2241 0.6645 ± 0.8574 no estimation result
the proposed algorithm with K = 150 0.5501 ± 0.0008 0.6583 ± 0.0111 0.6715 ± 0.0088

the proposed algorithm with K = 200 0.5500 ± 0.0006 0.6599 ± 0.0016 0.6701 ± 0.0008
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Figure 1: Harmonic estimation using cyclic statistic
algorithm of example 1.

additive noise are assumed as real zero-mean white
Gaussian with σ2

s1 = 1.0, σ2
s2 = 1.0, σ2

s3 = 1.0, and
σ2
v = 1.0. For comparison, we also show the frequen-

cy estimation results with the cyclic statistics algorith-
m developed in [3].

Example 1: The frequencies of harmonics are
ω1 = −0.72, ω2 = 0.45, and ω3 = 1.36, respec-
tively. We conduct 1000 Monte Carlo runs to esti-
mate the frequencies of harmonics using the proposed
SVD-based ESPRIT algorithm with K = 40 and the
cyclic statistics algorithm [3]. The mean ± standard
deviation (std) of the frequency estimation results is
given in Table 1. Due to the occasional appearance
of the pseudo peak (as shown in Fig. 1), the cyclic s-
tatistics algorithm based on peak-searching cannot al-
ways correctly estimate corresponding frequencies of
the harmonics. Table 1 shows that the proposed SVD-
based ESPRIT algorithm can accurately estimate the
frequencies of the harmonics.

Example 2: In this example, we test the frequen-
cy resolution of the proposed SVD-based ESPRIT al-
gorithm. The frequencies of the harmonics are very
close, ω1 = −1.24, ω2 = 0.66, and ω3 = 0.68. We

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω

|C
2x

(ω
;0

)|

Figure 2: Harmonic estimation using cyclic statistics
algorithm of example 2.

firstly estimate the frequencies using the cyclic statis-
tics algorithm. As we can see from Fig. 2, due to the
frequencies are very close, the peaks of the cyclic cor-
relation corresponding to the frequencies ω2 = 0.66
and ω3 = 0.67 stick together and cannot be separat-
ed. Therefore, the cyclic statistics algorithm is in-
valid in this case. We estimate the frequency using
the proposed SVD-based ESPRIT with K = 150 and
K = 200 by 1000 Monte Carlo runs. The mean ± std
of the frequency estimation results from 1000 Monte
Carlo runs are listed in Table 2. Table 2 shows that the
proposed SVD-based ESPRIT algorithm can distin-
guish effectively the two close frequencies with high
resolution.

5 Conclusion
A novel SVD-based ESPRIT algorithm is develope-
d to the frequency estimation of the harmonics in
multiplicative and additive noise. The proposed al-
gorithm exploited the underlying signal model of the
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harmonics in multiplicative and additive noise. The
proposed SVD-based ESPRIT algorithm not only has
high-resolution, but also is easy to be implemented in
practice because it does not need peak searching. Sim-
ulations results showed the proposed SVD-based E-
SPRIT algorithm has manifest superior performance,
compared with the cyclic statistics algorithm.
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No. 61362038) and the Research Foundation of Ed-
ucation Bureau of Jiangxi Province, China (grant No.
GJJ14738).

Appendix: Derivation of equation (4)

Let ωP+1 = 0, ϕP+1 = 0, and sP+1(t) = v(t), (1)
can be written as a simple form as following:

x(t) =

P+1∑
k=1

sk(t)e
j(ωkt+ϕk). (20)

Then, E{x2(t)x2∗(t+ τ)} can be calculated by

E{x2(t)x2∗(t+ τ)}

=

P+1∑
k=1

(
(σ2

sk
)2 + 2(σ2

sk
)2δ(τ)

)
e−j2ωkτ

+

P∑
k=1

P+1∑
l=k+1

4σ2
sk
σ2
sl
δ(τ)e−j(ωk+ωl)τ

=

P+1∑
k=1

(σ2
sk
)2e−j2ωkτ

+

(
P+1∑
k=1

2(σ2
sk
)2 +

P∑
k=1

P+1∑
l=k+1

4σ2
sk
σ2
sl

)
δ(τ).

(21)

In the derivation of (21), we use the assumption (3),
all the fourth-order cumulants of Gaussian random
process are equal to zero.

Hence, the corresponding cyclic means are

Ē{x2(t)x2∗(t+ τ)}

= lim
T→∞

1

T

T∑
t=1

E{x2(t)x2∗(t+ τ)}

=
P+1∑
k=1

(σ2
sk
)2e−j2ωkτ

+

(
P+1∑
k=1

2(σ2
sk
)2

P∑
k=1

P+1∑
l=k+1

4σ2
sk
σ2
sl

)
δ(τ), (22)

Ē{x2(t)} = lim
T→∞

1

T

T∑
t=1

E{x2(t)}

= lim
T→∞

1

T

T∑
t=1

(
P+1∑
k=1

σ2
sk
ej2(ωkt+ϕk)

)
= σ2

sP+1
, (23)

Ē{x2∗(t+ τ)}

= lim
T→∞

1

T

T∑
t=1

E{x2∗(t+ τ)}

= lim
T→∞

1

T

T∑
t=1

(
P+1∑
k=1

σ2
sk
e−j2(ωk(t+τ)+ϕk)

)
= σ2

sP+1
. (24)

In the derivation of (23) and (24), we use the as-
sumption (3) and

lim
T→∞

1

T

T∑
t=1

ejαt = δ(α) =

{
1, α = 0,

0, otherwise.
(25)

Therefore, the cyclic covariance is

Cτ = Ē{x2(t)x2∗(t+ τ)} − Ē{x2(t)}Ē{x2∗(t+ τ)}

=

P+1∑
k=1

(σ2
sk
)2e−j2ωkτ − (σ2

sP+1
)2

+

(
P+1∑
k=1

2(σ2
sk
)2 +

P∑
k=1

P+1∑
l=k+1

4σ2
sk
σ2
sl

)
δ(τ)

=

P∑
k=1

(σ2
sk
)2e−j2ωkτ + βδ(τ). (26)
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